Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis.

نویسندگان

  • Devinder Kaur
  • Patrick J Brennan
  • Dean C Crick
چکیده

Z-prenyl diphosphate synthases catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphates to synthesize polyprenyl diphosphates. In mycobacteria, these are precursors of decaprenyl phosphate, a molecule which plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan. Recently, it was demonstrated that open reading frame Rv2361c of the Mycobacterium tuberculosis H37Rv genome encodes a unique prenyl diphosphate synthase (M. C. Schulbach, P. J. Brennan, and D. C. Crick, J. Biol. Chem. 275:22876-22881, 2000). We have now purified the enzyme to near homogeneity by using an Escherichia coli expression system and have shown that the product of this enzyme is decaprenyl diphosphate. Rv2361c has an absolute requirement for divalent cations and an optimal pH range of 7.5 to 8.5, and the activity is stimulated by both detergent and dithiothreitol. The enzyme catalyzes the addition of isopentenyl diphosphate to geranyl diphosphate, neryl diphosphate, omega,E,E-farnesyl diphosphate, omega,E,Z-farnesyl diphosphate, or omega,E,E,E-geranylgeranyl diphosphate, with Km values for the allylic substrates of 490, 29, 84, 290, and 40 microM, respectively. The Km value for isopentenyl diphosphate is 89 microM. The catalytic efficiency is greatest when omega,E,Z-farnesyl diphosphate is used as the allylic acceptor, suggesting that this is the natural substrate in vivo, a conclusion that is supported by previous structural studies of decaprenyl phosphoryl mannose isolated from M. tuberculosis. This is the first report of a bacterial Z-prenyl diphosphate synthase that preferentially utilizes an allylic diphosphate primer having the alpha-isoprene unit in the Z configuration, indicating that Rv1086 (omega,E,Z-farnesyl diphosphate synthase) and Rv2361c act sequentially in the biosynthetic pathway that leads to the formation of decaprenyl phosphate in M. tuberculosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis.

Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here w...

متن کامل

Identification and Active Expression of the Mycobacterium tuberculosis Gene Encoding 5-Phospho- -D-ribose-1-diphosphate: Decaprenyl-phosphate 5-Phosphoribosyltransferase, the First Enzyme Committed to Decaprenylphosphoryl-D-arabinose Synthesis*

Decaprenylphosphoryl-D-arabinose, the lipid donor of mycobacterial D-arabinofuranosyl residues, is synthesized from phosphoribose diphosphate rather than from a sugar nucleotide. The first committed step in the process is the transfer of a 5-phosphoribosyl residue from phosphoribose diphosphate to decaprenyl phosphate to form decaprenylphosphoryl-5-phosphoribose via a 5-phospho-D-ribose-1-dipho...

متن کامل

Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis.

Decaprenylphosphoryl-d-arabinose (DPA) has been shown to be the donor of the essential d-arabinofuranosyl residues found in the cell wall of Mycobacterium tuberculosis. DPA is formed from phosphoribose diphosphate in a four-step process. The first step is the nucleophilic replacement of the diphosphate group with decaprenyl phosphate. This reaction is catalysed by the integral membrane protein ...

متن کامل

Structure and Inhibition of Tuberculosinol Synthase and Decaprenyl Diphosphate Synthase from Mycobacterium tuberculosis

We have obtained the structure of the bacterial diterpene synthase, tuberculosinol/iso-tuberculosinol synthase (Rv3378c) from Mycobacterium tuberculosis , a target for anti-infective therapies that block virulence factor formation. This phosphatase adopts the same fold as found in the Z- or cis-prenyltransferases. We also obtained structures containing the tuberculosinyl diphosphate substrate t...

متن کامل

High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors

A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 22  شماره 

صفحات  -

تاریخ انتشار 2004